
Abstract. High-quality atomic electron densities are
often approximated by limited-size expansions able to
reproduce particular features of a reference function.
Recent examples are the exponential sets of Koga
[(2000)Theor. Chim. Acta 95: 113] and the Gaussian
core densities of Cioslowski et al. [(1997) J. Chem.
Phys. 106: 3607]. Since atomic densities have a rich
structure and should obey theoretical conditions, the
approximation procedure must be flexible enough to
secure useful results. Here we present an extension of
the algorithm used by Koga that gives uniformly
accurate densities even for hybrid Gaussian–exponen-
tial sets. We report approximate densities of this type
for the ground state of neutral atoms He–Xe that
exactly copy the reference density and its first and
second derivatives at r ¼ 0, describe accurately the finer
details of the density convex structure, reproduce its
most significant moments, and give a faithful descrip-
tion of the Z dependence of density functionals like
hq�1=3i or the Shannon entropy.

Keywords: Atomic electron density – Hartree–Fock –
Neutral atoms

1 Introduction

The spherically averaged ground-state electron density
qðrÞ of neutral atoms has always been a very important
concept in atomic research. It is lately receiving much
attention, for it has found important applications in a
number of fields that demand accurate and workable
atomic electron densities, either complete or corelike.

Quantum mechanical simulations of large systems
almost necessarily invoke simplifications such as the use
of pseudopotentials or model potentials to account for
the chemically inactive core electrons. This results in vast

computer time savings at the expense of producing
pseudodensities. However, significant observables such
as hyperfine interactions, electric field gradients at the
nuclei, or X-ray structure factors depend on the com-
plete density. Moreover, the most successful theories of
the chemical bond—like the theory of atoms in mole-
cules [1] or the studies on the electron localization
function [2, 3, 4]—are based on the topological behavior
of scalar fields dependent on the full electron density.
The difficulties of the pseudopotential approximation in
these cases lead to the reconstruction of complete den-
sities from pseudodensities [5, 6, 7, 8], a task that re-
quires reliable descriptions of the atomic cores.

On the other hand, chemical studies of X-ray-derived
charge densities, now routine [9], rely on the a priori
knowledge of a model crystalline electron density that is
further allowed to relax in a number of ways (i.e. mul-
tipole deformation, radial breathing, etc.). The inde-
pendent atom model (IAM), in which the crystal
(molecule) is approximated as a procrystal (promole-
cule) defined as the superposition of spherical densities
of the isolated atoms, is invariably used to construct the
initial density model. The quality of the IAM cores used
determines in an essential way that of the final densities.
For example, no reliable density derivatives near the
nuclei may be obtained with the very small analytical
representations of the IAM densities used just some
years ago.

Furthermore, the Hirshfeld partitioning of the elec-
tron density [10], together with the IAM, have also been
used by Spackman and coworkers [11, 12, 13] to show
that the crystalline density can be divided into molecular
fractions that permit univocal definitions of molecular
surfaces and volumes, as well as a straightforward cal-
culation of average quantities by direct integration over
the weighted density. The computational advantages of
these Hirshfeld surfaces, which are the isosurfaces of
the molecular weight function wðrÞ ¼ qpromoleculeðrÞ=
qprocrystalðrÞ corresponding to w ¼ 0:5, heavily rest upon
the availability of suitable analytical expressions for the
atomic densities. In a different but related context,
Martı́n Pendás et al. [14] discuss the advantages of the
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IAM in the topological analysis of the electron density
of ionic crystals.

For years, the nonrelativistic Hartree–Fock–Root-
haan (HFR) atomic functions of Clementi and Roetti
[15] and McLean and McLean [16] were nearly universal
references in this field. Later on, more accurate atomic
densities were reported by Bunge et al. [17] and Koga
and coworkers [18, 19, 20, 21]. These high-quality Slater-
type densities, however, contain a number of rnie�fir

terms simply too large to be appropriate for research
work on complex systems. Fortunately, Koga [22] has
recently shown that a much smaller representation of the
atomic density can be found by careful fitting of a
suitable analytical expression to the high-quality densi-
ties. Such analytical approximations can be designed to
fulfil specific requirements not necessarily satisfied if the
standard HFR procedure over the corresponding basis
set is performed. With a similar strategy, Cioslowski
et al. [23] obtained accurate analytical representations of
the relativistic core–electron densities of elements 3–118
which are made of 50 s-type Gaussian terms. These
core–electron densities are useful tools for many types of
calculations and analyses, from the quantum-mechanical
theory of atoms in molecules [1] to the experimental
determination of molecular densities from X-ray dif-
fraction measurements. However, the Gaussian densities
do not satisfy the Kato nucleus–electron cusp condition
[24], one of the few structural properties of the atomic
electron density known in analytical form. This and
other relations of this sort, such as the differential
inequality for qðrÞ1=2 of the Hoffmann–Ostenhof
expression [25] or the large–distance r2be�2ar asymptotic
form [with b ¼ ðZ � N þ 1Þ=a� 1, a ¼

ffiffiffiffiffi

2�
p

, and � being
the ionization potential of the N -electron atom of atomic
number Z] [26, 27] might be very significant attributes of
the approximate density, depending upon the target
established in its design. For instance, the convex
structure of the electron density may become a very
relevant target in the research of nonnuclear maxima of
the molecular or crystal densities [28].

These arguments call for powerful and flexible
approximation procedures, able to accommodate in a
systematic manner the various theoretical requirements
imposed upon a reduced-size atomic density. We present
in this work results of our investigation on the
Lagrangian algorithm used by Koga [22] in reproducing
high-quality numerical HFR atomic densities in terms of
exponential sets with fewer than 30 primitive functions.
We show here that this algorithm is easily formulated in
a simple algebraic form that permits the immediate
incorporation of new constraints with a minimum
amount of work. We have found that inclusion of the
constraint of an exact copy of the second derivative of
the reference density at r ¼ 0 improves significantly the
conduct of the approximate density near the nucleus.
The power of the algorithm is demonstrated by consid-
ering hybrid densities made of a reduced Gaussian set
plus a single exponential function. Such peculiar forms
display the appropriate behavior at very short and large
distances and uniformly satisfy the known theoretical
conditions operating on the electron atomic density.
This mathematical result has been obtained for the large

majority of ground–state densities of neutral atoms He–
Xe. Moreover, we examine a collection of structural
properties of densities of this form that were not con-
sidered in Ref. [22]. We believe that it is important to
document the very good response of both the reference
and the approximate densities to a wide set of very
demanding tests, of relevance in a variety of theoretical
and computational fields.

In the next section we describe the approximation
procedure with a minimum of computational details.
The more relevant results are presented and discussed in
Sect.3. The last section collects our conclusions. Atomic
units are used throughout.

2 The approximation procedure

Given a reference atomic electron density qðrÞ, we
consider an analytical approximation to it of the form

F ðrÞ ¼ f0ðrÞ þ fyðrÞC ; ð1Þ
where

f0ðrÞ ¼ Aqð0Þ exp ð�2ZrÞ ; ð2Þ
where Z is the atomic number, fðrÞ is a p-dimensional
column vector with elements

fiðrÞ ¼ exp ð�fir
2Þ ; ð3Þ

and the scalar A, the p components of the column vector
C, and the orbital exponents fi, collected in the column
vector Z are fitting parameters. For reference densities
with qð0Þ 6¼ 0, F ðrÞ approaches the origin exponentially

as Aqð0Þð1� 2ZrÞ þ 1ypC, for r� 1. 1p is the p-dimen-
sional column vector having all components equal to
unity. If qð0Þ ¼ 0, F ðrÞ becomes a pure Gaussian

density, approaching the origin as ð1�p � Zyr2ÞC for
r� 1.

The 2p þ 1 free parameters in F ðrÞ are chosen to
match qðrÞ as closely as possible, particularly in the re-
gions where it is large and in the range of r relevant to
chemical bonding. To reach these goals we minimize the
mean square deviation

DðC;ZÞ ¼ 4p
Z

1

0

dðrÞ2r2dr

¼ 4p
Z

1

0

½qðrÞ � F ðrÞ�2r2dr

¼ 4p
Z

1

0

½�qðrÞ � fyðrÞC�2r2dr ; ð4Þ

with �qðrÞ ¼ qðrÞ � f0ðrÞ, under a series of constraint
conditions incorporated by the method of Lagrange
multipliers. Cioslowski et al. [23] weighted the deviation
dðrÞ in Eq. (4) with the inverse of the reference density as
a compromise between the unweighted fitting, which
gives worse results at places of small density, and the
qðrÞ�2 weight, that gives rise to difficulties when qðrÞ is

114



large. We use the unweighted deviation to have good
fitting near the nucleus, the exponential component
favoring the copying at large distances.

Equation (4) can be written in matrix form:

DðC;ZÞ ¼ D0 � 2GyCþ CySC ; ð5Þ
where

D0 ¼ 4p
Z

1

0

�q2ðrÞr2dr ; ð6Þ

G ¼ 4p
Z

1

0

�qðrÞfðrÞr2dr ð7Þ

is a p-dimensional column vector, and

S ¼ 4p
Z

1

0

fðrÞfyðrÞr2dr ð8Þ

is the p � p metric matrix of the F ðrÞ Gaussian subset.
As constraint conditions we select the following.

First, we want F ðrÞ and its first and second derivatives to
exactly reproduce the corresponding reference values at
the origin, i.e.

1: F ð0Þ ¼ qð0Þ ð9Þ

2: F 0ð0Þ ¼ q0ð0Þ ð10Þ

3: F 00ð0Þ ¼ q00ð0Þ : ð11Þ
Condition 1 implies

1ypC ¼ qð0Þð1� AÞ : ð12Þ

Equations (9) and (10) show that F ðrÞ fulfils the cusp
condition if qðrÞ does. This is at variance with Koga’s
approach [22], that forces F ðrÞ to fulfil this condition in
any case, even if the reference density does not. From
Eq. (10), we find

A ¼ � q0ð0Þ
2Zqð0Þ ; ð13Þ

showing that if qðrÞ fulfils the cusp condition, A ¼ 1 and,

from Eq. (12), 1ypC ¼ 0. Using Eqs. (12) and (13), we
can write

1ypC ¼ F ð0Þ þ F 0ð0Þ
2Z
¼ qð0Þ þ q0ð0Þ

2Z
¼ gð0Þ : ð14Þ

Condition 3 restricts the fiCi products in say, the form

2ZyC ¼ �q00ð0Þ � 2Zq0ð0Þ ¼ hð0Þ : ð15Þ
This constraint is a further difference with the criteria
adopted by Koga [22].

At this point, we recall that the choice A ¼ 1 may
produce numerical instabilities in the optimization pro-
cess. The value given by Eq. (13), however, avoids such
difficulties and makes the algorithm more general and
independent of whether the reference density fulfils the
cusp condition or not. Constraints 1, 2, and 3, expressed

in the forms of Eqs. (14) and (15), incorporate this op-
tion for A.

Finally, we try to copy the structure of qðrÞ in the range
of chemical interest by forcing F ðrÞ to reproduce inner
and outer hrki moments of qðrÞ, namely k ¼ �2; . . . ;þ6.
These are demanding and significant restrictions since
the density may be characterized by these moments.
Thus, we have nine further condition equations,

4p
Z

1

0

½F ðrÞ � qðrÞ�rkþ2dr ¼ 0 ; ð16Þ

that can be written in the form

TyC�D ¼ 0; ðk ¼ �2; . . . ;þ6Þ : ð17Þ
In this equation, the p-dimensional column vectors

Tk ¼ 4p
Z

1

0

fðrÞrkþ2dr; k ¼ �2; . . . ; 6 ; ð18Þ

are collected in the p � 9 T matrix, and the numbers

Dk ¼ 4p
Z

1

0

½qðrÞ � f0ðrÞ�rkþ2dr ð19Þ

in the nine-dimensional column vector D. In this way,
TyC�D is a nine-dimensional column vector.

The appropriate Lagrange function for the condi-
tional minimization of DðC;ZÞ in Eq. (5) is

KðC;ZÞ ¼ D0 � 2GyCþ CySC� LyðTyC�DÞ

� l½1ypC� gð0Þ� � m½2ZyC� hð0Þ� ; ð20Þ

where the nine kk multipliers associated with the hrki
constraints (Eq. 16) are collected in the L column vector,
and l and m are the multipliers associated with the
constraints at the origin (Eqs. 9, 10, 11).

The conditions that make KðC;ZÞ stationary are

@K
@C
¼ �2Gþ 2SC� TL� l1p � 2mZ ¼ 0 ; ð21Þ

@K
@L
¼ TyC�D ¼ 0 ; ð22Þ

@K
@l
¼ 1ypC� gð0Þ ¼ 0 ; ð23Þ

@K
@m
¼ 2ZyC� hð0Þ ¼ 0 ; ð24Þ

or, in a more compact form

2S �T �1p �2Z
Ty 0 0 0

1yp 0 0 0

2Zy 0 0 0

0

B

B

B

@

1

C

C

C

A

C

L

l
m

0

B

B

@

1

C

C

A

¼

2G
D

gð0Þ
hð0Þ

0

B

B

@

1

C

C

A

: ð25Þ

For a given Z vector, Eq. (25) is a linear system of
p þ 11 equations with p þ 11 unknowns that gives the
solutions Copt, Lopt, lopt, and mopt. The Lagrange
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function (Eq. 20) evaluated at this solution gives the
optimum deviation

Dopt ¼ D0 � 2GyCopt þ C
y
optSCopt : ð26Þ

This scheme can easily be extended to make higher-order
even derivatives F 2nð0Þ equal to q2nð0Þ. Odd derivatives
cannot be considered because the identification
F 2nþ1ð0Þ ¼ q2nþ1ð0Þ; ðn ¼ 1; 2; . . .Þ does not contain free
parameters. The general even-derivative condition, in
the form of Eqs. (14) and (15), is

ð�1Þn ð2nÞ!
n!
ðZnÞyC ¼ q2nð0Þ � ð�2ZÞ2nAqð0Þ ; ð27Þ

where ðZnÞy ¼ ðfn
1; . . . ; fn

pÞ. Each of these constraint
equations introduces a new Lagrange multiplier, a new
row, and a new column in the linear transformation
(Eq. 25).

To conclude this section, we recall that the matrix
elements of the T matrix are

Tik ¼ 2pf�ðkþ3Þ=2i C
k þ 3

2

� �

; ð28Þ

and those of the S matrix are

Sij ¼ p=fij

� �3=2
; fij ¼ fi þ fj : ð29Þ

To compute the G vector we have to specify the form
of �qðrÞ, a function that can be obtained from numerical
Hartree–Fock or multiconfigurational Dirac–Fock cal-
culations. In this paper, we use the reference atomic
density given by Koga et al. [21]. Since this is a Slater-
type density, �qðrÞ can always be written in the form

�qðrÞ ¼
X

j

bjrmj exp ð�rjrÞ : ð30Þ

Then, the Gi element becomes

Gi ¼ 4p
X

j

bj

Z

1

0

rmjþ2e�fir2e�rjrdr : ð31Þ

The basic integral

Iðf; r; sÞ ¼
Z

1

0

rse�fr2e�rrdr ð32Þ

can be computed analytically but its numerical evalua-
tion avoids the instabilities that may appear for certain
[f; r] pairs. To perform this integration, we first trans-
form r to �r ¼

ffiffiffi

f
p

r and obtain

Iðf; r; sÞ ¼ f�ðsþ1Þ=2Ið1; r0; sÞ ; ð33Þ
where r0 ¼ rf�1=2. Then �r 2 ½0;1Þ is mapped into
u 2 ½�1;þ1� by the transformation

�rðuÞ ¼ �rm
1þ u
1� u

� �

; ð34Þ

where

�rm ¼
�r0 þ r02 þ 8s

� �1
2

4
ð35Þ

is the value of �r for which the integrand of Ið1; r0; sÞ is a
maximum. Then, Eq. (32) becomes

Iðf; r; sÞ ¼ 2rmf�ðsþ1Þ=2
Z

þ1

�1

F ½rðuÞ�du ; ð36Þ

where

F ½rðuÞ� ¼ rsðuÞ
ð1� uÞ2

e�r2ðuÞe�r0rðuÞdu : ð37Þ

The integral in Eq. (36) is finally computed with a
relative error smaller than e ¼ 10�12 using the numerical
integration scheme of Pérez–Jordá and coworkers [29].

Finally, to avoid a prohibitive computational effort in
optimizing the Gaussian exponents fi 2 Z, we follow the
even-tempered recipe [22, 23]

fi ¼ abi�1; ði ¼ 1; . . . ; pÞ : ð38Þ
Optimum values of a and b were obtained by mini-

mizing Dopt (Eq. 26) by means of a conjugate gradient
method which does not compute derivatives [30].

3 Results and discussion

3.1 Control of the fitting

As a rule, the minimization of Dopt (Eq. 26) for the atom
with atomic number Z used input values of a and b taken
from the optimum values found for the atom with
atomic number Z � 1. When this strategy was used and
the run ended successfully giving Dopt �10�10 or smaller
the optimization was accepted. For many atoms, this
procedure works very well and the optimization ends
very quickly. For some others, however, we had to stop
the minimization and start it again with fresh input
values of a and b. We found no systematic way of
altering the input values of these parameters when the
general strategy fails to give an acceptably small value of
Dopt. In these problematic atoms, we generally found
several local minima and could not establish for sure if
the lowest minimum had or had not been located.
Moreover, we observed that optimum deviations differ-
ing by an order of magnitude or more can be reached
with sets of ða; bÞ pairs very close to each other. Our best
deviation is smaller than 10�7 in all the cases, except for
Al, Si, P, S, and Cl, where we were unable to find
deviations smaller than this number with p � 25. For the
Cu–Se set, we needed 25 Gaussian primitives to obtain
acceptable deviations; all other cases required just 20
terms. To analyse further the reasons behind the poor
behaviour of the fitting procedure in the problematic
cases we repeated it using as a reference the Clementi
and Roetti densities [15]. In the 11 cases (Al, Si, P, S, Cl,
Cu–Se) except Zn, we obtained Dopt values smaller than
10�12. This fact clearly evidences that the quality of the
fitting depends to a great extent on the reference density
and less on the atomic number, configuration, or
electronic state of the atom.

The variation of a and b with the atomic number Z is
better appreciated in Fig 1. The smallest orbital
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exponent fmin ¼ a shows a clear shell structure with rare-
gas atoms at the peaks and alkaline atoms at the bottom
line. The best b, however, is roughly constant along each
period, with the exception of the last one (Rb–Xe),
where it shows a rather erratic trend.

The values of qð0Þ, the scalar A in Eq. (13), a and b,
Eq. (38), the rmax coordinate giving the maximum jdðrÞj
in Eq. (4), and the relative error � ¼ 100�
jdðrmaxÞj=qðrmaxÞ are collected in Table 1. The values of A
show that the cusp condition is neither fulfilled by the
reference densities nor by the approximate ones. We see
that A < 1 for He, B–O, and Cl, and A > 1 for all other
atoms. We comment on this difference in the next sub-
section. The sixth column shows that the largest devia-
tion of the approximate density appears at very internal
regions: rmax is smaller than 0.07 bohr for all cases. The
relative error � is smaller than 10�1 for all atoms but Y
and Cd, where it is abnormally high; it is smaller than
10�2 for 33 out of the 53 atoms. As a typical example,
some detailed results for the Fe atom are presented in
Table 2.

3.2 Nonnegativity, convexity, and shell structure
of the approximate density

We have checked the nonnegativity of F ðrÞ. Mo and In
showed in the initial fittings some negative values of
F ðrÞ, probably owing to the restrictions of the innermost
hrki moments. A calculation for these two atoms with
kmin ¼ 0 instead of kmin ¼ �2 gives nonnegative F ðrÞ for
any r, with relative errors for hr�2i (hr�1i) of 2.9�10�4
(9.6�10�4) and 5.2�10�4 (1.65�10�3) for Mo and In,
respectively. No other atom gives F ðrÞ < 0 in the range
0 � r � 9:0 bohr. For r > 9:0 bohr, any negative density
is always smaller than 10�7 in absolute value. It is also
worth mentioning that removal of the restrictions of the

innermost moments (k ¼ �2 and k ¼ �1) gives F ðrÞ
functions that reproduce very well the reference values of
these two integrals. However, removal of the constraints
associated with k ¼ 1� 6 gives F ðrÞ functions with
unacceptable relative errors for the corresponding
moments, at least in some cases. This numerical result
shows the importance of the hrki (k ¼ 1� 6) constraints
in determining the approximate density in regions of
chemical interest.

A global view of the quality of the fitting can be seen
in Fig. 2, where we compare F ðrÞ and its first and second
derivatives with the corresponding reference functions
for sulfur (0:001 < r < 9:3 bohr). We find similar results
for all atoms. The good performance of F ðrÞ, F 0ðrÞ, and
F 00ðrÞ in this range of r is apparent. The behaviour of the
derivatives is particularly satisfactory because it is not
enforced by the algorithm. The inset in this figure shows
that the approximate density reproduces in detail the
small nonconvexity region of the reference density for
this atom.

A detailed examination of the F ðrÞ density can be
done in terms of the radial functions

AðrÞ ¼ � q0ðrÞ
2ZqðrÞ BðrÞ ¼ � q00ðrÞ

2Zq0ðrÞ : ð39Þ

To see these functions for the two atoms with large
relative errors (last column of Table 1), namely, Y and
Cd, we plot AðrÞ for Cd (0:0001 � r � 8:4 bohr) in Fig. 3
and BðrÞ for Y (0:0001 � r � 10:3 bohr) in Fig. 4. The
complete oscillatory structure of these functions is
reproduced by the approximate densities. For larger
distances, the fitting progressively deteriorates but the
density is already smaller than 10�8.

The AðrÞ function becomes the scalar A, Eq. (13), at
the nucleus. Table 1 shows that the reference and the
approximate densities give values for A very close to but
different from unity. Koga’s density has, for most atoms
up to Xe, a small region close to the nucleus where
AðrÞ > 1, but a group of six elements (He, B, C, N, O,
and Cl) have AðrÞ < 1 for 0 � r � 1. Gálvez and Porras
[31, 32] conjectured that the function gðrÞ ¼ qðrÞþ
q0ðrÞ=2Z ¼ qðrÞ½1� AðrÞ� is positive everywhere. We
observe that in Koga’s representation gðrÞ has a small
region near the nucleus where it is negative for atoms
Li–Xe, with the exceptions of B, C, N, O, and Cl.

We also analysed whether F ðrÞ reproduces or not the
convex structure of qðrÞ. This property was investigated
by Angulo and coworkers [33, 34, 35, 36, 37, 38] for
Z � 54 using the ground–state HFR solutions of Clem-
enti and Roetti [15]. They found that neutral atoms with
Z ¼ 1; 2; 7� 15, and 33–44 have a convex density.
Esquivel et al. [26] showed that strict pseudoconvexity
½ðr1 � r2Þq0ðrÞ � 0 implies qðr1Þ � qðr2Þ� is the general
structural property of the electron density of the neutral
atoms. They extended the numerical analysis to all
atoms with Z � 92 using the bare Coulomb field (BCF)
approximation, the Hartree–Fock level, and highly
correlated wave functions, and showed that the non-
convexity of qðrÞ is a periodical property whose origin
can be ascribed to the BCF of the atom [27]. Here we use
their type of plots [27] to show the Z dependence of the

Fig. 1. Optimum values of a and b, Eq. (38), for He–Xe. a has been
scaled by a factor 10.0
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two parameters characterizing the nonconvexity, name-
ly, the abscissa of the most negative q00ðrÞ, rmin, and the
width Dr of the nonconvex region.

In Fig. 5 we see that Koga’s densities behave very
much as the densities of Clementi and Roetti do [27],
in spite of the clear structural differences between
these two HFR solutions. The approximate densities
copy quite well this pattern with four exceptions: Zn,
Ga, and Rh, which are nonconvex in Koga’s picture
but convex in the approximate representation, and the
As atom, that behaves in the opposite way. We notice

that the nonconvex width is smaller than 0.25 bohr for
all but three atoms (Li, Be, and B). This means that
Dr is a quite demanding test for an approximate
density.

We use the BðrÞ function in Eq. (39) to further
examine the fitness of the F ðrÞ functions. Starting from
the general inequality for qðrÞ1=2 established by the
Hoffmann-Ostenhof’s expression [25]

� 1

2
r2

ffiffiffiffiffiffiffiffiffi

qðrÞ
p

þ ½�� V ðrÞ�
ffiffiffiffiffiffiffiffiffi

qðrÞ
p

� 0 ; ð40Þ

Table 1. Summary of results for
atoms He–Xe. The dimension
of the f(r) vector in Eq. (2) is
p ¼ 20 in all cases except in the
Cu–Se group, where p ¼ 25.
rmax is the coordinate of the
highest deviation in Eq. (4). � is
the relative error of the
approximate density

Atom qð0Þ A, Eq. (13) a, Eq. (38) b, Eq. (38) rmax � (%)

He 0.3595875124�101 0.999913 0.0868033775 1.6587545566 0.048921 0.000
Li 0.1381509394�102 1.000142 0.0116723101 1.8132088461 0.065830 0.002
Be 0.3538901529�102 1.000269 0.0205262078 1.8183983077 0.046956 0.001
B 0.7192019892�102 0.999875 0.0346918575 1.8058375895 0.017700 0.001
C 0.12741568785�103 0.999935 0.0518650363 1.7988504058 0.014750 0.001
N 0.2059662847�103 0.999920 0.0692063825 1.7947898357 0.012643 0.001
O 0.3116597037�103 0.999967 0.0746499286 1.8056476734 0.011632 0.001
F 0.44832243011�103 1.000000 0.0873899901 1.8080047184 0.010871 0.001
Ne 0.6199243910�103 1.000025 0.1026647887 1.8095035595 0.009784 0.001
Na 0.8337671053�103 1.000075 0.0263200911 1.8925419771 0.029650 0.003
Mg 0.1093726466�104 1.000056 0.0243418861 1.9157128693 0.012180 0.002
Al 0.1402876814�104 1.000138 0.0309117714 1.9097388902 0.011243 0.002
Si 0.17656111084�10 1.000018 0.0303687190 1.9021837210 0.012135 0.002
P 0.2186313774�104 1.000000 0.0424440383 1.8803796984 0.010772 0.002
S 0.2669472820�104 1.000005 0.0489589594 1.8709900401 0.010618 0.002
Cl 0.3219178700�104 0.999972 0.0589438067 1.8557109540 0.010508 0.002
Ar 0.3839790833�104 1.000012 0.1328763086 1.8197832987 0.008120 0.001
K 0.4539154495�104 1.000578 0.0246332858 1.9591189535 0.019954 0.024
Ca 0.5320605746�104 1.000885 0.0296388407 1.9722121308 0.018028 0.009
Sc 0.6183371002�104 1.000821 0.0239192856 1.9945777721 0.010397 0.006
Ti 0.7134347345�104 1.000755 0.0265441851 1.9948515790 0.009924 0.005
V 0.8178132891�104 1.000701 0.0298180821 1.9924129997 0.009493 0.005
Cr 0.9314933629�104 1.000637 0.0330506124 1.9503132017 0.009097 0.005
Mn 0.1056137959�105 1.000609 0.0322891792 1.9606106511 0.009183 0.005
Fe 0.1191012264�105 1.000588 0.0407474907 1.9608370071 0.016950 0.005
Co 0.1336884777�105 1.000547 0.0418099810 1.9484575704 0.008086 0.004
Ni 0.1494214268�105 1.000526 0.0448690512 1.9303267139 0.019237 0.008
Cu 0.1662690689�105 1.000497 0.0281202960 1.7912255000 0.009202 0.012
Zn 0.1844947108�105 1.000486 0.0139972708 1.9568985420 0.004872 0.009
Ga 0.2039910960�105 1.000468 0.0148340246 1.9726902687 0.004484 0.007
Ge 0.2248213834�105 1.000451 0.0169150404 1.9479095480 0.004802 0.007
As 0.2470302422�105 1.000428 0.0065178488 2.0448703464 0.004429 0.017
Se 0.2706668768�105 1.000426 0.1052039355 2.0264542614 0.001166 0.051
Br 0.2957710255�105 1.000423 0.1194026181 1.9978975985 0.006559 0.002
Kr 0.3223836707�105 1.000390 0.1384007539 1.9748871400 0.007794 0.006
Rb 0.3506036512�105 1.000391 0.0243149975 1.9563931873 0.022411 0.030
Sr 0.3804560626�105 1.000368 0.0423966415 1.8820647718 0.013481 0.020
Y 0.4119170231�105 1.000308 0.0324988842 1.8008987990 0.041228 0.311
Zr 0.4450829106�105 1.000443 0.0475553764 1.8236198506 0.013601 0.033
Nb 0.4799179393�105 1.000460 0.0561513020 1.9602114265 0.011764 0.087
Mo 0.5165771156�105 1.000453 0.0628798335 1.9025810029 0.010182 0.009
Tc 0.5551228592�105 1.000437 0.0603410279 1.9317383336 0.013438 0.098
Ru 0.5954034580�105 1.000423 0.0599624251 1.9285028719 0.013132 0.089
Rh 0.6376629944�105 1.000413 0.0592981861 1.9829806006 0.010719 0.099
Pd 0.6818119701�105 1.000398 0.0243923125 2.2848207456 0.004794 0.054
Ag 0.7280973386�105 1.000404 0.0227734986 2.3111741820 0.004418 0.092
Cd 0.7764811118�105 1.000395 0.0285738056 2.2883639708 0.004594 0.118
In 0.8269282243�105 1.000379 0.0537077197 2.0539527671 0.008217 0.016
Sn 0.8795276411�105 1.000395 0.0326036858 2.1383309733 0.011556 0.009
Sb 0.9343120690�105 1.000383 0.0257251787 2.2005023947 0.010045 0.017
Te 0.9913364561�105 1.000370 0.0099282829 2.1999991501 0.011112 0.016
I 0.1050645522�106 1.000367 0.0099007596 2.1999865037 0.012297 0.019
Xe 0.1112278513�106 1.000357 0.0287047070 2.2009214000 0.009487 0.020
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and taking for V ðrÞ the bare Coulomb potential,
the following inequality can be readily found for BðrÞ
[26]

BðrÞ � 1

Zr
AðrÞ � 1

AðrÞ

� �

þ 1

2
AðrÞ þ �

Z2AðrÞ
¼ CðrÞ ; ð41Þ

say, where AðrÞ is the function in Eq. (39). Equation (41)
sets a lower limit to BðrÞ for any r, including r ¼ 0. If the
density exactly fulfils the cusp condition, the r ¼ 0 limit
of the CðrÞ function is finite, namely

lim
r!0

CðrÞ ¼ Cð0Þ ¼ �2Bð0Þ þ 5

2
þ �

Z2
; ð42Þ

Table 2. Details of the approximate density, F ðrÞ, and its first and
second derivatives for the Fe atom

p ¼ DIMðfðrÞÞ ¼ 20
a ¼ 0:0407474907
b ¼ 1:9608370071

Dopt ¼ 0:6048495038 � 10�12

A ¼ 1:0005884569
dmax=qðrmaxÞ ¼ 5:0921062939 � 10�5

rmax ¼ 0:0169498462
�F 00ð0Þ=ð2F 0ð0ÞÞ ¼ 26:176622694

i Ci=F ð0Þ fi

1 0:9649518942� 10�9 4:0747490749� 10�2

2 0:1571926122� 10�6 7:9899187808� 10�2

3 0:1431049569� 10�5 1:5666928429� 10�1

4 0:2107663992� 10�5 3:0720293052� 10�1

5 0:6076501237� 10�5 6:0237487485� 10�1

6 0:7306313448� 10�4 1.1811589468
7 0:4578723738� 10�3 2.3160601741
8 0:4981020591� 10�3 4.5414165001
9 )0:1651900160� 10�2 8.9049775381
10 0:4501248107� 10�2 1:7461209504� 101

11 0:1471842873� 10�2 3:4238585785� 101

12 0:9992197236� 10�1 6:7136286079� 101

13 )0:1069256635� 10�1 1:3164331426� 102

14 )0:6034992170� 10�2 2:5813108235� 102

15 )0:1404465336� 10�2 5:0615297895� 102

16 )0:1382653724� 10�2 9:9248349239� 102

17 0:1701684332� 10�3 1:9460983608� 103

18 )0:1240901515� 10�2 3:8159816854� 103

19 0:8504584231� 10�3 7:4825181072� 103

20 )0:4593120463� 10�3 1:4671998411� 104

F ð0Þ ¼ þ0:1191012264� 105

F 0ð0Þ ¼ 0:6196908240� 106

F 00ð0Þ ¼ þ0:3244282577� 108

Fig. 2. Logarithmic plots of qðrÞ, q0ðrÞ, and q00ðrÞ for the S atom.
Solid lines and dotted lines (hidden behind the solid lines) stand for
reference and approximate functions, respectively. The inset shows
the small nonconvex region near r � 1:39 bohr

Fig. 4. q00ðrÞ=½2Zq0ðrÞ� for Y. Solid (dotted) lines stand for the
reference (approximate) density

Fig. 3. q0ðrÞ=½2ZqðrÞ� for Cd. Solid (dotted) lines stand for the
reference (approximate) density
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and we find the well-known lower limit for BðrÞ at the
origin [27], Bð0Þ � 5

6þ �
3Z2 ¼ BL. If the density does not

fulfil the cusp condition exactly, as is the case for the
reference densities used in this work, Að0Þ 6¼ 1. Then
limr!0 CðrÞ ¼ þ1 if Að0Þ > 1 and limr!0 CðrÞ ¼ �1 if
Að0Þ < 1. Thus, densities with Að0Þ > 1 do not obey the
BCF inequality in Eq. (41) in regions very close to the
nucleus.

We also examined the radial function

KðrÞ ¼ BðrÞ � CðrÞ ; ð43Þ
which must be nonnegative according to Eq. (41). To
avoid the wrong behaviour at very small distances, we
corrected AðrÞ with a uniform shift,
AðrÞ ! A0ðrÞ ¼ AðrÞ � ½Að0Þ � 1�, that is about 10�4 for
all cases in this study. It is unobservable in Fig. 6, where
we plot KðrÞ for the rare-gas atoms for 0 � r � 20 bohr.
We see that KðrÞ is nonnegative in this range and that
the inequality in Eq. (41) is fulfilled for all distances of
practical interest in these four cases. KðrÞ has a clear
shell structure that is essentially the same for all atoms in
a period, with a number of maxima equal to n� 1,
suggesting that it is an effect of the bare Coulomb
potential. The matching of this structure by the approx-
imate density is qualitatively correct for the four atoms.
The quantitative performance is excellent for Ne and Ar,
and very good for Kr. The deviations for u > 0:92 are
physically meaningless because the density there is much
smaller than the numerical precision of the calculation.

3.3 Density functionals

We briefly present here selected results that illustrate the
performance of the approximate densities in the calcu-
lation of specific density integrals. We will refer to
functionals involving fractional powers of qðrÞ and
examine relative deviations of the form

Ds ¼ 100�

R

1

0

½qs=3ðrÞ � F s=3ðrÞ�r2dr

R

1

0

qs=3ðrÞr2dr
: ð44Þ

The Z dependence of this deviation for three function-
als is shown in Fig.7: the Thomas–Fermi kinetic
energy, Dk (s=5), the Thomas–Fermi exchange energy,
Dx (s=4), and the Wigner correlation energy, Dc [39],
all calculated with the numerical integration scheme of
Pérez–Jordá and coworkers [29]. The performance of
the approximate densities is uniformly good, with the
exceptions of Mo and In. All other atoms but Tc give
relative deviations smaller than 0.05% for the three
integrals. The two peaks in Fig. 7 are very annoying,
particularly if one realizes that the atomic configura-
tions of Mo and In atoms do not differ in an essential
way from those of their neighbours in the periodic
table. To explore this issue in depth we computed Dk,
Dx, and Dc for Tc, Mo, and In using the F ðrÞ functions
obtained by fitting the Clementi and Roetti densities
[15]. For the three atoms and the three functionals the
relative deviation is always smaller than 0.002%. This
fact shows once again that the density used as a
reference affects more the performance of the fitting
procedure than the specific configuration or electronic
state of the atom considered.

The density functional associated with the two-thirds
power of the electron density is particularly interesting
owing to its detailed shell structure. The plot of this
integral in Fig. 8 shows that the performance of the
approximate densities is excellent with the single excep-
tion of the As atom, where we find insufficient accuracy
in the numerical integration. An 80-point Laguerre
quadrature [40] reduces the deviation for this case to a
quarter of the value depicted in the figure. This shell
structure correlates with the electron occupation of the
atomic orbitals and it can be described in terms of the

Fig. 5. a Values of r at the minimum of the
nonconvexity region and b the width of this
region. Solid lines stand for the reference
density. Dotted lines stand for (the negative
of) the approximate density
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electron configurations selected in the reference calcu-
lation [21]. The functional increases from the ðnsÞ1 to the
ðnsÞ2 states but it uniformly decreases while filling the np
orbitals, up to the 5p states, where the effect vanishes.
The filling of the 3d block shows that the ð4sÞð3dÞxþ1
configuration, a more internal distribution than the
ð4sÞ2ð3dÞx one, gives a smaller value for this integral.
Within the 4d block, Y, Zr, Tc, and Cd have ð5sÞ2ð4dÞx
ground configurations and this functional is linear in Z,
whereas Nb, Mo, Ru, Rh, and Ag, having ð5sÞ1ð4dÞxþ1
configurations, lie on a nearly parallel line of smaller
intercept. The last member of this block, the Pd atom,
has a ð5sÞ0ð4dÞ10 configuration and shows a drop in this
quantity comparable to those of the rare-gas atoms. All
these electronic features, due to the action of the electron
repulsion, are quantitatively reproduced by the approx-
imated densities.

Finally, we present two quality measures related to
the Shannon entropy. The first one shows the integrand

of the N -normalized entropy as a function of the radial
coordinate. This function is a demanding test for any
approximate density owing to its shell structure. The
case of the iodine atom is plotted in Fig. 9. The inte-
grand goes to zero at small and large distances, being
negligible for 5� 10�4 � r � 3:0 bohr. Its shell struc-
ture, as that of the KðrÞ function (Eq. 43), is entirely
determined by the principal quantum number, with
n� 1 maxima. The approximate density follows the
reference pattern extremely well.

The second entropy measure is the Z dependence of
the unit-normalized entropy S1 ¼ �hln qi1 ¼ �4p
R1
0

�qðrÞ ln �qðrÞr2dr, with �qðrÞ ¼ qðrÞ=N . This quantity
shows the structure of the N -normalized expectation
value of the minus-one-third power of qðrÞ, namely
hq�1=3iN ¼ 4pN�1

R1
0 q2=3r2dr, as we see in Fig. 10.

Again, the approximate densities reproduce quantita-
tively the results of the reference functions for all atoms.
This completes our appraisal of the F ðrÞ densities.

Fig. 6. Test function KðrÞ, Eq. (43), for Ne,
Ar, Kr, and Xe. Solid lines and dotted lines
stand for the reference and the approximate
densities, respectively. u ¼ ðr � hriÞ=ðr þ hriÞ
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4 Concluding remarks

We have presented a method to fit a linear combination,
F ðrÞ, of 1s–type Gaussian functions plus a 1s–type
exponential function to a high–quality radial atomic
density, qðrÞ. The fitted density and its first and second
derivatives are forced to equal the corresponding
reference values at the origin. Additional restrictions
are imposed on F ðrÞ in order to have exact matching of
the hrki moments (k ¼ �2; . . . ;þ6) of qðrÞ. Using the

high-quality nonrelativistic HFR densities of Koga et al.
[21] as a reference, we obtained accurate analytical
representations for atoms He–Xe. The presence of a
single exponential component gives the required flexi-
bility to obtain quantitative results with basis sizes
comparable to those used in the all-exponential approx-
imations. The performance of the proposed algorithm
was evaluated by measuring the response of F ðrÞ, F 0ðrÞ

Fig. 8. Z dependence of the hq�1=3i functional for atoms He–Xe.
The solid line stands for the reference densities and the symbols
stand for approximate densities

Fig. 9. Integrand of the Shannon entropy for the iodine atom. Solid
(dotted) lines stand for reference (approximate) densities, respec-
tively

Fig. 10. a Unit-normalized Shannon entropy �
R1
0 4pr2 ðqðrÞ=NÞ½ �

ln ðqðrÞ=NÞ½ �dr, and b hq�1=3i functional N�1
R1
0 4pr2q2=3dr, for

atoms He–Xe. Solid lines (symbols) stand for reference densities
(approximate) densities

Fig. 7. Relative deviations (percent) of the Thomas–Fermi kinetic
energy, DK, the exchange energy, DX, and the Wigner correlation
energy, Dc, for He–Xe
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and F 00ðrÞ to a series of demanding tests, including the
shell structure of q00ðrÞ, the location and shape of the
nonconvexity regions of the density, and the Z depen-
dence of several functionals which are important in
density functional theory. With a few exceptions, the
structural features of these selected properties are
quantitatively reproduced by the approximate densities.
These results make of them uniformly adequate research
tools for atomic, molecular, and solid–state calculations.
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